C4 34	NT 1
orugeni	Number

<u>Instructor</u> <u>Section</u>

QUEEN'S UNIVERSITY, FACULTY OF APPLIED SCIENCE APSC 171 FINAL EXAMINATION, DECEMBER, 2009 D. AGUILAR, L. JONKER, M. ROTH

- The candidate is urged to submit with the answer paper a clear statement of any assumptions made if doubt exists as to the interpretation of any question that requires a written answer.
- PLEASE NOTE: Proctors are unable to respond to queries about the interpretation of exam questions. Do your best to answer exam questions as written.
- Answer in the spaces provided on the question paper. If necessary, an answer may be continued on THE BACK OF THE PREVIOUS PAGE.
- You may use calculators with a GOLD sticker.
- SHOW HOW YOU REACH YOUR RESULTS. Marks are not given for a correct answer alone. State or display answers in an appropriate way.
- You may write in pencil, but write clearly. Do not write in red ink.
- Except where a decimal answer is asked for, it is preferable to leave answers in the form $\sqrt{\pi}$, e^2 and so on. However, do any obvious simplification (for example $2 + \frac{1}{2} + \frac{1}{3} = 2\frac{5}{6}$ or $\frac{17}{6}$, $\frac{(x+1)^2}{(x+1)} = (x+1)$).
- Marks per question or part question are shown in square brackets on the right margin (for example [4]). The total number of marks is 75.
- Check that your question paper has 10 pages.

FOR EXAMINER'S USE ONLY				
Page	Mark Available	Mark		
2	8			
3	11			
4	9			
5	5			
6	6			
7	7			
8	9			
9	9			
10	11			
Total	75			

1. Calculate $\frac{dy}{dx}$ in each of the following cases:

(a)
$$y = \frac{\cos(x^2 + 1)}{\sin^2(x) + 1}$$
 [3]

(b)
$$y = (\arctan x)^{x^3}$$
 [5]

2. Calculate
$$\int_{1}^{4} \frac{\sqrt{x} + x^2 + 1}{3x\sqrt{x}} dx$$

3. Calculate
$$\int_0^\pi \frac{\sin(x)}{1 + \cos^2(x)} \, dx$$

4. Suppose waste water from a manufacturing process flows into a holding tank at a rate of f(t) kg per hour, and that at time t (measured in hours) the concentration of salt in the waste water is s(t) ppm (parts per million); that is, it is at a concentration of s(t) kg of salt per 1,000,000 kg of water. The following table records the values of f(t) and s(t) at various times:

t (hours)	0	2	4	6	8	10	12
f(t) (kg)	1.5×10^2	1.7×10^2	1.6×10^2	1.4×10^2	1.2×10^2	0.9×10^2	1.2×10^2
s(t) (ppm)	47	49	50	48	50	51	49

(a) If you had formulas for f and s, what integral would calculate the increase in the mass of salt in the holding tank between times t = 0 and t = 12? [4]

(b) Interpret $\frac{d}{dx} \int_{1}^{x} f(t) dt$ (describe what it means physically) and determine, from the information provided, its value at time x = 4. [2]

(c) Use Simpson's Rule to estimate the total amount of salt added to the holding tank between times t = 0 and t = 12. [3]

- 5. Consider the region D bounded by the x-axis, the line x=e and the curve $y=\ln x$. If D is rotated around the y-axis it produces a solid E that looks like a cylinder with a trumpet-shaped hole through the middle. We assume that the units on the axes are meters, that this solid is made of material whose density is $\rho=0.8$ kg per cubic meter, and that it is rotating around the y-axis with an angular velocity $\omega=5$ radians per second. Recall from Physics that if m is the mass of a tiny piece of E, located at distance x from the axis of rotation, then the kinetic energy of this one tiny piece is given by $(1/2)m\omega^2x^2$ Joules. We want to use cylindrical shells to calculate the kinetic energy of the rotating solid E.
 - (a) Explain why in this problem we should use cylindrical shells as opposed to horizontal slices to calculate the total kinetic energy of E. [1]

(b) Find an expression for the kinetic energy of a single cylindrical shell of radius x and thickness dx. [4]

Question 5 continued...

(c) Calculate the kinetic energy of E.

[6]

6. Find the volume of the solid produced when the region under the graph of $y = \frac{1}{x^2 + 6x + 5}$ and the lines x = 0 and x = 1 is rotated about the line x = -3. [7]

7. An underground spherical oil tank with two-meter radius is half full of oil. A hose is attached to a valve at the very bottom of the tank. The other end of the hose is five meters above the bottom of the oil tank, and is attached to a tanker truck. If the density of oil is 900 kg/m^3 , and the acceleration due to gravity is $g = 9.8 \text{ m/s}^2$, what is the minimal amount of work required to pump the oil into the truck? [9]

- 8. Newton's Law of Cooling tells us that the rate at which a potato heats up in a hot oven is proportional to the difference between the temperature of the potato and the temperature of the oven.
 - (a) Assuming that the oven is at 180° translate this into a mathematical sentence, clearly defining each of the variables and constants needed to do that, and introducing no more variables than necessary. [2]

(b) If the initial temperature of the potato is 20° C, and if it takes 1 minute for the potato to heat up to 30° C, what will its temperature be at the end of 2 minutes?

[7]

- 9. The paths of the two spacecraft whose positions at time t are given by $\mathbf{r}(t) = t^3 \hat{\mathbf{i}} + t^2 \hat{\mathbf{j}} + t \hat{\mathbf{k}}$ and $\mathbf{u}(t) = (t^2 2t) \hat{\mathbf{i}} + t \hat{\mathbf{j}} + (t-2) \hat{\mathbf{k}}$ cross at the point (-1, 1, -1) (they do not collide, however). Time is measured in seconds and distance in meters.
 - (a) What is the speed of the first spacecraft when it passes through (-1,1,-1)? [3]

(b) Do the trajectories cross at any other points? [4]

10. Calculate the improper integral $\int_{-\infty}^{0} \frac{1}{(8-x)^{7/3}} dx$. [4]